The Role of Mathematics in the Spiritual Journey of George MacDonald

David L. Neuhouser
Taylor University

C. S. Lewis said of George MacDonald, “I know hardly any other writer who seems to be closer, or more continually close, to the Spirit of Christ Himself.” (Lewis, p.xxxv) Surely, anything that contributed to that spiritual development is worthy of our consideration. Mathematics is one of the last things that most people would think of as having anything to do with one’s spiritual growth. However, I know that mathematics can because it has contributed to mine. It is not the thesis of this paper that mathematics was the most important factor in MacDonald’s spiritual journey. However, I believe it was a factor and one that not many people are aware of.

MacDonald believed everything is related and so mathematics must be related to spiritual development. In one of his sermons, he asked the rhetorical question, “What is the whole system for, but our education?” (Unspoken Sermons, p.240) Later in the same sermon, “We must remember that God is not occupied with a grand toy of worlds and suns and planets, of attractions and repulsions, of agglomerations and crystallizations, of forces and waves; that these but constitute a portion of his workshops and tools for the bringing out of righteous men and women to fill his house of love withal. (Unspoken Sermons, p. 243) As noted earlier, MacDonald studied mathematics at King’s College in Aberdeen and taught mathematics and science at various times and places including at the Ladies’ College in Manchester. Given his knowledge of and love for mathematics as shown in his novels, sermons, and letters, I’m sure that he included mathematics as one of those things that God can use “to fill his house of love.” In Gutta Percha Willie, he said that “Everything he did would help his arithmetic, and geography, and history; and these and those and all things besides, would help him to understand poetry.” (p. 326-7) Some examples of MacDonald’s love of mathematics were given in the first chapter and more will be given later in this chapter.

How can mathematics contribute to one’s spiritual development? Here is a list of some of the ways.

1. Beauty is an indicator of truth and so tells us about God. MacDonald appreciated the beauty of mathematics.

2. His study of Euclidean geometry not only developed his reasoning ability and his appreciation for reason, it also showed him the limitations of reason.

3. Imagination is an important part of mathematics. Thus mathematics aids the development of imagination which is important in learning anything including theology.
4. Paradoxes in mathematics help us to deal with paradoxes in religion.

5. In mathematics obedience leads to knowledge and one of the main ideas in MacDonald’s thought is that obedience leads to knowledge of God.

The rest of the paper will attempt to support these claims and show their relevance to MacDonald’s spiritual growth.

The Role of Beauty.

Is mathematics beautiful as was claimed in chapter one? Many students, even some mathematics majors, are surprised when hearing the claim that mathematics is beautiful. Beauty is the quality attributed to whatever pleases or satisfies in certain ways, as by line, color, form, texture proportion, rhythmic motion, tone, etc., or by behavior, attitude, etc. The word beautiful is applied to that which gives the highest degree of pleasure to the senses or to the mind and suggests that the object of delight approximates one’s conception of an ideal. With this concept of beauty, I would like to give examples of what I consider beautiful about mathematics. I first experienced mathematical beauty in an algebra class in high school. We had been solving quadratic equations, first by factoring and then by a process called “completing the square.” After several days of using the latter method on many individual equations, the teacher stepped to the board and wrote the general quadratic with a, b, and c, as coefficients instead of specific numbers. He then proceeded to solve it by completing the square getting the solution for x in terms of a, b, and c. When I realized that I would never need to go through the laborious process of completing the square again, but could just substitute in the formula, I experienced the joy of seeing beauty in mathematics. There have been many such experiences since, such as seeing patterns in series like the Fibonacci numbers, the relationship between apparently unrelated things, and the elegance of a mathematical proof. (For more detailed examples see Chapter 7, Part 1 of *Open to Reason*, Neuhouser, Taylor University Press or “Beauty in Mathematics: Some Theological Implications” in the proceedings of the 1989 ACMS conference.)

However, since I may not be able to convince you with examples, I will appeal to authority. At age 11, Bertrand Russell, mathematician and philosopher, said about Euclid’s geometry, “I had not imagined there was anything so delicious in the world.” The French mathematician, Henri Poincare said, “The mathematician does not study pure mathematics because it is useful; he studies it because he delights in it and he delights in it because it is beautiful.” G. H. Hardy, a British mathematician, said, “The mathematician’s patterns, like the painter’s or the poet’s must be beautiful; the ideas, like the colours or the words, must fit together in a harmonious way. Beauty is the first test: there is no permanent place in the world for ugly mathematics.” Others besides mathematicians have appreciated mathematical beauty. The Nobel Prize winning physicist, Paul Dirac said, “It is more important to have beauty in one’s equations than to have them fit experiment because the discrepancy may be due to minor features which are not properly taken into account and which will get cleared up with further developments of the theory. . . . It seems that if one is working from the point of view of
getting beauty in one’s equations and if one has a really sound instinct, one is on the sure line of success.” (Polkinghorne, p. 46)

Even poets have noted the beauty of mathematics.

“O blinding light, O holy terrible day,
When first the shaft into his vision shone
Of light anatomized! Euclid alone
Has looked on beauty bare.” (Millay, p. 605)

Charles Williams wrote about “the Glory of God” or the Shekinah as “the indubitable manifestation of God,” and he “continually refers to its mathematically meticulous accuracy.” Lewis refers to it as “Order, envisaged not as restraint nor even as a convenience but as a beauty and splendour.” Williams wrote that God’s messengers “are sent out from the visible mathematics of the glory to proclaim the moral mathematics of the glory.” (Shideler, p. 84)

“In Cat o’ Mary, [an unpublished manuscript] Dorothy L. Sayers attributes to Katherine, a character in the story, a discovery she herself had experienced as a girl. In laying out a new tennis court, Katherine’s father can not get the rectangle right. Katherine remembers from Euclidean geometry how she can use circles to get it right. Sayers then describes Katherine’s feelings thus:

She had been brought face to face with beauty. It had risen up before her . . . the lovely satisfying unity of things: the wedding of the thing learned and the thing done: the great intellectual fulfillment . . . Nothing would ever quite wipe out the memory of that magnificent moment when the intersecting circles marched out of the pages of the Euclid book and met on the green grass in the sun-flecked shadow of the mulberry tree. (qtd. in Reynolds, p. 67)

Dirac’s belief about beauty being an indication of truth is common to many scientists and mathematicians. Einstein was not excited when he was told of experimental evidence for his theory of relativity. He had already been convinced by its beauty. This is similar to MacDonald’s reply when asked if Christianity was not too good to be true, “No, it’s too good not to be true.” In other words, the Gospel is so beautiful it must be true.

In a letter to his father (April 11, 1847) when MacDonald was 23, he expressed some of his earlier doubts about the value of beauty even fear that it might be dangerous, he wrote

One of my greatest difficulties in consenting to think of religion was that I thought I should have to give up my beautiful thoughts & my love for the things God has made. But I find that the happiness springing from all things not in themselves sinful is much increased by religion. God is the God of the Beautiful, Religion the Love of the Beautiful& Heaven the House of the Beautiful – nature is tenfold brighter in the sun of righteousness, and my love of nature is more intense since I became a Christian… God has not given me such thoughts & forbidden me to enjoy them. Will he not in them enable me to raise the voice of praise? [P 17-8]
Beauty was one reason MacDonald believed in Christianity. The beauty of nature does show the loving nature of God. In *Annals of a Quiet Neighbourhood*, he wrote,

In the shadows lay fine webs and laces of ice, so delicately lovely that one could not but be glad of the cold that made the water able to please itself by taking such graceful forms. And I wondered over again for the hundredth time what could be the principle which, in the wildest, most lawless, fantastically chaotic, apparently capricious work of nature, always kept it beautiful. The beauty of holiness must be at the heart of it somehow, I thought. Because our God is so free from stain, so loving, so unselfish, so good, so altogether what He wants us to be, so holy, therefore all His works declare Him in beauty; His fingers can touch nothing but to mould it into loveliness; and even the play of His elements is in grace and tenderness of form. [p. 211]

The hero of *Robert Falconer* contemplates the beauty of nature and what it must imply about the beauty of the creator. This helps to overcome the negative witness of churchgoers about the nature of God.

Little did Robert think . . . that his soul was searching after One whose form was constantly presented to him, but as constantly obscured and made unlovely by the words without knowledge spoken in the religious assemblies of the land; that he was longing without knowing it on the Saturday for that from which on the Sunday he would be repelled without knowing it. Years passed before he drew nigh to the knowledge of what he sought. [p. 123]

The beauty of music as well as nature is a witness.

Who invented music? Someone must have made the delight of it possible! With his own share in its joy he had had nothing to do! Was Chance its grand inventor, its great ingenieur? Why or how should Chance love loveliness that was not, and make it be, that others might love it? Could it be a deaf God, or a being that did not care and would not listen, that invented music? No, music did not come of itself, neither could the source of it be devoid of music! [There and Back, p. 280-281]

His conclusion was that beauty does imply the existence of God as well as tell us something about the nature of God. “To say that there was no God behind the loveliness of things was to say there was no loveliness – nothing but a pretence of loveliness! The world was a painted thing! A toy for a doll! A phantasm!” [There and Back, p. 160]

MacDonald recognized and enjoyed beauty in mathematics. In *The Marquis of Lossie*, MacDonald rhapsodized about making “a grand discovery upon the very summits of the moonlit mountain range of the mathematics.” (p. 97) In the sermon referred to earlier, MacDonald asked, “Does God care for suns and planets and satellites, for divine mathematics and ordered harmonies, more than for his children?” His implied answer is, of course not. People are more important. The point here is that although people are more important than mathematics, mathematics still deserves the adjective “divine.” This is similar to Lewis’s climax to his sermon, “Weight of Glory” where he emphatically and poetically states that such things as culture and the arts are insignificant compared to people, even though Lewis did appreciate culture and the arts. MacDonald’s love of mathematical beauty is also shown in his poem “A Hidden Life.”

Here mathematics wiled him to their heights;
And strange consent of lines to form and law
Made Euclid a profound romance of truth. (p. 142)

MacDonald’s statement in the *Marquis of Lossie*, (quoted earlier) that “secret of life”, actually the Christian Gospel, as “the vital germ of all that is lovely and graceful, harmonious and strong, all without which no poet would sing, no martyr burn, no king rule in righteousness, no geometrician pore over the marvelous must,” As MacDonald wrote in *Dish of Orts* (quoted earlier) “every form in which truth is embodied, whether it be sight or sound, geometric diagram or scientific formula,” edifies and gives pleasure.

Before leaving the concept of beauty and its implications, we should consider its role in C. S. Lewis’ journey to Christianity. When he was twenty-two years old and not yet a Christian or even a theist, he wrote to a friend, “For one thing nearly all beautiful sights are to me chiefly important as reminders of other beautiful sights: without memory twould be a poor affair.… beauty seems to me to be always an invitation of some sort & and usually an invitation to we don’t know what.” (p. 568, *Collected Letters*, Vol. 1) Of course, it was only later that he realized that it was an invitation to God. He thought that this joy or longing that came from experiencing beauty was such an important factor in his conversion that he titled his spiritual autobiography, *Surprised by Joy*.

The Role of Imagination

In an essay, “The Imagination: Its Function and Its Culture,” MacDonald expressed his views about the role of imagination in science. “It is the farseeing imagination which beholds what might be a form of things, and says to the intellect: ‘Try whether that be not the form of things;’ which beholds or invents a harmonious relation of parts and operations, and sends the intellect to find out whether that be not the harmonious relation of them.” (*Dish of Orts*, p. 12) In a footnote, MacDonald adds the following.

This paper was already written when, happening to mention the present subject to a mathematical friend, a lecturer at one of the universities, he gave us a corroborative instance. He had lately guessed that a certain algebraic process could be shortened exceedingly if the method which his imagination suggested should prove to be a true one—that is, an algebraic law. He put it to the test of experiment—committed the verification, that is, into the hands of his intellect—and found the method true. It has since been accepted by the Royal Society. (*Dish of Orts*, p. 13)

This friend was undoubtedly the Oxford mathematician Charles Dodgson, better known as Lewis Carroll.

That MacDonald knew that imagination was an important part of mathematics is also shown by his statement in the same essay that poetry develops the imagination in ways that are important to mathematicians. In the same way mathematics develops the imagination in ways that are important in the search for truth in any area. A character in the novel, *The Portent*, found that although he could handle simple equations he had trouble when he attempted one more complex—“one in which something bordering upon imagination was necessary.” (p. 58)

Appealing to authority again, the mathematician, Augustus DeMorgan said, “The moving power of mathematical invention is not reasoning but imagination.” In fact, it is
imagination that enables us to see patterns and relationships in mathematics. And when this happens the beautiful pattern or relationship brings us joy. Then we experience even greater joy when imagination leads us to the elegant deductive proof of what we discovered. The study of infinity in mathematics is a source of wonder and beauty. In *What’s Mine’s Mine*, MacDonald pointed out the importance of the feeling of infinity when observing the sky and that the apparent eameny sphere was “the only figure, image, emblem, symbol, fit to begin us to know God.” Mathematical infinity must have given him a similar feeling.

The Role of Paradox

Consideration of mathematical infinity not only shows us beauty but leads to many paradoxes as well. A paradox is a seeming contradiction, not necessarily an actual contradiction. Mathematics contains many such statements that seem contradictory to even great mathematicians. One brief description of a paradox in mathematics concerns rational numbers. A rational number is a number that may be expressed as the ratio of two whole numbers. It has been proved that between any two rational numbers, no matter how close they are to each other, there is an infinite number of other rational numbers. That is, they are unbelievably crowded so close together that they must completely fill up the number line. However, it can also be proved that there are irrational numbers (not crazy numbers, but numbers that cannot be expressed as a ratio of whole numbers) and, in fact, that there are infinitely many of these irrationals and even infinitely many more than the infinite number of rational numbers!

This is just one example of a mathematical paradox. If mathematics contains paradoxes, then any account of the creator of the universe and His relation to his creatures will contain them also. It is certainly true mathematical paradoxes have been a great help to me in coming to terms with paradoxes in Christianity.

In his biography of MacDonald, Rolland Hein states that one of MacDonald’s ideas as a Christian thinker is the “centrality of paradox in truth…. MacDonald’s insistence on the paradoxical nature of truth occurs throughout [Lilith]. (Hein, p. 403, 405)

He [MacDonald] preached a sermon in which he affirmed that Christians in general were “far too anxious to be definite, and have finished, well-polished systems, forgetting that the more perfect a theory about the infinite the surer it is to be wrong – the more impossible it was to be right.” The evident reason why no system of thought could be ‘right,’ in any exclusive sectarian sense, was simply that the mind was capable of containing it. The truth concerning God and his ways, being infinite, necessarily stood outside the capacity of the finite human mind fully to grasp. (Hein, p. 80)

The Role of Reason

When Malcolm, in the novel *Malcolm*, is questioned about the value of studying logic for a fisherman, Malcolm replies,

But what for should na a fisher-lad hae a smatterin’ o’ loagic, my lord? For Greek or Laitin there’s but sma’ opportunity o’ exerceese in oor pairts; but for loagic, a fisher body may aye haud his han’ in i’ that. He can aye be tryin’ t' upo' 's wife, or 's guid mother, or upo' 's boat, or upo' the fish when they winna tak. Loagic wad
save a heap o' cursin' an' ill words.” (p. 71)

If it is possible to use logic on wife, mother, boat or fish, why not on one's religious beliefs? In one of his unspoken sermons, MacDonald said, that when deciding which of two interpretations of scripture to believe, “I must hope in what seems logical against what seems illogical…” (*Unspoken Sermons*, p. 481)

In his biography of MacDonald, Hein points out that although MacDonald felt at home with logic and argument and was adept at debate and analysis; he knew that reason unassisted by imagination was completely inadequate in understanding God. MacDonald did use reason in defense of Christianity but knew that it was not conclusive. A correct understanding of mathematics shows that logical conclusions are only as good as the premises they are based on. In *The Descent of the Dove*, Charles Williams wrote,

‘Reason,’ as Chesterton said, ‘is always a kind of brute force… The real tyranny was the tyranny of aggressive reason over the cowed and demoralized human spirit.’ There is, certainly, a way by which Reason can avoid that brutality… It consists of saying, at the very beginning, as that other great rationalist Euclid said: “Let us suppose….” … We cannot begin to prove anything without supposing something. The great scholastics hardly ever said: ‘Let us suppose…” (p. 122)

MacDonald did not have a “cowed or demoralized” spirit and had learned from his study of mathematics what all mathematicians know, that is, that mathematical reasoning alone is not enough. Often people who do not understand mathematics either believe that it is the one field of study where everything is certain or that it is useless in any study of important real life situations. MacDonald understood mathematics well enough not to fall into either of those traps and so he was able to use reason wisely.

His understanding of the limitations of reason led him to reject theological systems that were too rigid and helped him to understand his mentor, Frederick Denison Maurice, who also distrusted theological systems. Maurice said that “the opposite of system was not lack of system, but method, in which logic would serve as a handmaid rather than a tyrant.” (Dearborn, p. 52) Although mathematics is not necessary to come to this conclusion, it certainly agrees with and reinforces it. In *Baptized Imagination: the Theology of George MacDonald*, Kerry Dearborn states, “MacDonald had trained as a scientist, so he was not disparaging of analytic thought, but wanted to clarify reason’s limitations in the light of faith and imagination.” (Dearborn, p. 92)

The Role of Obedience

One of the major themes in all of MacDonald’s books is that obedience leads to knowledge. In his novels it is the constant advice to anyone who wants to know if Christianity is true. An objection to the claim that the path to truth is obedience is that before we can obey the truth, we must know the truth. We must know before we can obey. MacDonald answers this objection in a conversation between a devout Christian and her unbelieving friend in *Weighed and Wanting*.

“Yes, yes! But how is one to know what is true, my dear? There are so many differing claims to the quality.”

“I have been told, and I believe it with all my heart,” replied Hester, “that the only way to know what is true is to do what is true.”

“But you must know what is true before you can begin to do what is true.”
“Everybody knows something that is true to do – that is, something he ought to lose no time in setting about. The true thing to any man is the thing that must not be let alone but done. It is much easier to know what is true to do than what is true to think. But those who do the one will come to know the other – and none else, I believe. [P, 373]

Many use the friend’s excuse that they don’t know where to begin. MacDonald claims that this is a poor excuse; that everyone knows some things they should be doing but aren’t. These things often seem like little things, such as a kind word or deed to someone near us, but they are essential things on the path to greater knowledge. This theme is emphasized over and over in his books.

To every man I say, “Do the truth you know and you shall learn the truth you need to know.” [Dish of Orts, p. 76]

The greatest fact of all is that we are bound to obey the truth, and that to the full extent of our knowledge thereof, however little that may be. This obligation acknowledged and obeyed, the road is open to all truth - and the only road. The way to know is to do the known. [St. George and St. Michael, p. 421]

MacDonald may have first learned this truth about obedience leading to knowledge as a boy studying mathematics. In Robert Falconer, Robert said this to a friend who was an agnostic but wanted to know the truth.

'I canna help thinkin' o' what Mr. Innes said to me ance. I was but a laddie, but I never forgot it. I plaguit him sair wi' wantin' to unnerstan' ilka thing afore I wad gang on wi' my questons (sums). Says he, ae day, "Robert, my man, gin ye will aye unnerstan' afore ye du as ye're tellt, ye'll never unnerstan' anythong. But gin ye du the thing I tell ye, ye'll be i' the mids o' afore ye ken 'at ye're gaein' intil 't." I jist thocht I wad try him. It was at lang division that I boglet maist. Weel, I gaed on, and I cud du the thing weel eneuch, ohn made ae mistak. And aye I thocht the maister was wrang, for I never kent the rizzon o' a' that beginnin' at the wrang en', an' takin' doon an' substrackin', an' a' that. Ye wad hardly believe me, Mr. Ericson: it was only this verra day, as I was sittin' i' the kirk …lang division came into my heid again; and first aye bit glimmerin' o' licht cam in, and syne anither, an' afore the psalm was dune I saw thru' the haill process o' t. But ye see, gin I hadna dune as I was tauld, and learnt a' aboot hoo it was dune aforehan', I wad hae had naething to gang rizzonin' aboot, an' wad hae fun' oot naething.' (Robert Falconer, p.234-5)

There are biographical elements in this novel so it is not unreasonable to assume that MacDonald may have had that same experience with long division. Of course, mathematics may not have been the first place that MacDonald learned that obedience is the path to knowledge but if not, at least it would have reinforced that belief.

Summary

Mathematics was an important factor in MacDonald’s spiritual growth, not as great as many other things, such as the Bible, literature, his father, his wife, friends, poverty, ill health, and much more. However, the beauty of math as a pointer to God and
His nature, imagination in mathematics that increased his imaginative power, mathematical reason and paradox to aid his spiritual understanding, and the role of obedience were significant as well.

Appendix

Two more ways that mathematics may have contributed to MacDonald’s spiritual development are humility and hard work on the fundamentals. These are important in learning mathematics and so help us to see their importance in every other area.

The Role of Humility.

Humility is a necessary condition for any knowledge. If we think we know it all, then we are in no condition to learn mathematics or anything else. E. Stanley Jones said, “Be proud and self-sufficient and unbending and the universe is a sealed book to you. Surrender yourself to the facts as a little child and everything is open to you.” (Jones, p. 193.) As a mathematics professor I have seen this truth over and over. The student who comes to class convinced of his own knowledge is not open to learning anything new. Humility was an important attribute in MacDonald’s spiritual development and mathematics may have played a small part in the development of that trait.

The Role of Hard Work

I am sure that I don’t have to spend as much time convincing you that hard work is a part of mathematics as I did in convincing you that mathematics is beautiful! MacDonald was aware that mathematics required hard work. As young Alec in Alec Forbes of Howglen is advised, “Sma’ preparation does weel eneuch for Professor Fraser’s Greek; but ye’ll fin’ it’s anither story wi’ the mathematics.” (p. 179) Whether MacDonald learned the necessity of hard work from mathematics or not, hard work was an important part of his spiritual development. In Robert Falconer, Robert gives this advice to one of his disciples, “When anything looks strange, you must look the deeper.” (p. 462) That is, when studying the Bible as in any study, there are times when hard work is necessary. This was MacDonald’s method. Especially, in studying the Bible he was always digging deeper with a humble spirit to learn more and more. And everything he learned he put into practice. His entire life is an example of the value of hard work. Given his poor health, poverty, and family responsibility, his extensive reading in English literature is even more impressive than C. S. Lewis’s. Also, he could read German, French, Italian, Dutch, Greek and Latin. His diligent study was a major factor in his spiritual maturity and in his ability to communicate spiritual truth to his readers.

Other Benefits of Mathematics

According to two characters in MacDonald, the study of mathematics seems to be that it is relaxing or makes one sleepy! It was said of Donal Grant in Sir Gibbie, “For when he
reached home, and had watered them, he had to tie up the animals, each in its stall, and make it comfortable for the night; next, eat his own supper; then learn a proposition of Euclid, and go to bed.” (p. 98) Even the good preacher in The Marquis of Lossie (to the consternation of a pious parishioner) said, “A bit of bread and cheese before I go to bed is all I need to sustain nature, and fit me for understanding my proposition in Euclid. I have been in the habit, for the last few years, of reading one every night before I go to bed.” (p. 109)

It is also capable of soothing or eliminating pain. At least the title character in Wilfrid Cumbermede, found it so. When suffering from depression, he said, “I found also some relief in resuming my mathematical studies: the abstraction of them acted as an anodyne.” (p. 470) And, in Alec Forbes, when Alec is suffering, he is given the following advice, “Gin ye’ll tak’ my advice ye’ll tak’ a dose o’ mathematics direckly. It’s a fine alterative as weel as antidote.” (p. 191) A good example to the therapeutic effects of mathematics from real life is the great mathematician, Pascal. After his conversion to Christianity, he decided that time spent on mathematics was a “vanity to be eschewed for its derogatory effects on the soul.” (E. T. Bell. Men of Mathematics, New York, Simon and Schuster, 1965, p, 85.) So he gave it up until later when a toothache kept him awake he worked on a difficult problem in mathematics and the pain ceased. He took this as a sign that mathematics is not a sin! In any case, the solace of mathematics may have been a benefit to MacDonald and some help in his spiritual growth.

Works Cited

Martin Goldstein, Martin and Inge F. How We Know, (New York: Plenum Press, 1978)

The following books are by George MacDonald and except for *Robert Falconer* are from the editions used in the Johannessen reprints [Johannesen, P.O. Box 24, Whitethorn, CA 95589]

Alec Forbes, (London: Hurst & Blackett, 1865)

Annals of a Quiet Neighbourhood, (London: Strahan, 1867)

Dish of Orts. (London: Sampson Low, Marston & Co., 1895)

Gutta Percha Willie. (London: Blackie, 1901)

Malcolm, (London: Kegan Paul, 1886)

The Marquis of Lossie. (London: Kegan Paul, 1887)

The Portent, (London: Fisher Unwin, 1909)

Robert Falconer, new and enlarged edition (London: Hurst and Blackett, Ltd., c. 1895)

St. George and St. Michael. (London: C. Kegan Paul and Co., 1878)

There and Back, (London: Kegan Paul, Trench, Trubner & Co., 1900-1910)

Weighed and Wanting, (London: Sampson Low, Marston, Searle & Rivington, 1882)

Unspoken Sermons: Series I, II, and III. (London: Longmans, Green, and Co., Series I, 1885; Series II, 1886; Series III, 1889)